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Abstract

We propose a method that aims to lessen the significant accuracy degradation
that a discriminative classifier can suffer when it is trained in a specific domain
(source domain) and applied in a different one (target domain). The principal rea-
son for this degradation is the discrepancies in the distribution of the features that
feed the classifier in different domains. Therefore, we propose a domain adap-
tation method that maps the features from the different domains into a common
subspace and learns a discriminative domain-invariant classifier within it. Our
algorithm combines bilinear classifiers and multi-task learning for domain adap-
tation. The bilinear classifier encodes the feature transformation and classification
parameters by a matrix decomposition. In this way, specific feature transforma-
tions for multiple domains and a shared classifier are jointly learned in a multi-task
learning framework. Focusing on domain adaptation for visual object detection,
we apply this method to the state-of-the-art deformable part-based model for cross
domain pedestrian detection. Experimental results show that our method signifi-
cantly avoids the domain drift and improves the accuracy when compared to sev-
eral baselines.

1 Introduction
Developing reliable object recognition and detection systems relies mostly in the fact of training
accurate vision-based object classifiers. For such training process, there has been a lot of effort in
looking for good features and appropriate learning machines. In this context, most of the methods
proposed for learning classifiers implicitly assume that the training and testing data are statistically
similar. Unfortunately, the accuracy of such classifiers can drop significantly when the training
data (source domain) and the application scenario (target domain) have inherent differences. For
instance, when the training and testing data are collected using different cameras or when the object
poses and views distributions are different in each dataset. To avoid this problem, it is required to
adapt the classifier trained on the source domain to operate in the target domain, which drives us to
the realm of domain adaptation [11, 1, 12, 7, 5, 13, 16].

Learning the optimal feature transformation and an adapted classifier can be seen as two major
methods to address the domain adaptation problem. Recent works have been focusing on com-
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bining feature transformation and learning adaptive classifiers in a joint max-margin discriminative
learning framework [2, 6]. Following this idea, we propose a general domain adaptation method that
jointly learns a feature transformation from the source and the target domains to a common subspace
and a discriminative classifier in a multi-task framework. This method is inspired by some recent
researches e.g. bilinear classifiers [9], steerable part models[10].

Our proposal can be applied to general domain adaptation problems and particularly for visual do-
main adaptation tasks considering that visual data are better modeled in a matrix form rather than in
a vector manner [15]. In this work, we focus on cross-domain object detection and apply our method
to the state-of-the-art deformable part-based model (DPM) which relies on HOG-style features and
is trained by latent SVM [4].

The proposed method has connections to some recent works in domain adaptation. Hoffman et al.
proposed a domain invariant feature representation method, which learns a transformation matrix
and the classifier parameter jointly in a max-margin discriminative framework [6]. However, this
method is limited by the fact of mapping the data from target domain to the source domain instead of
using a common subspace. Duan et al. [2] extended the feature replication method of [11] by using
a shared feature subspace, thus handling heterogeneous features from different domains. However,
the feature replication method increases the computational cost and model complexity. Our method
learns a low-rank parameter matrix which reduces the feature dimension, increasing the efficiency
in terms of computational cost.

2 Method
We propose to use a bilinear model for visual domain adaptation, which maps the domain spe-
cific features to a low dimensional domain invariant subspace and learns a discriminative classifier
simultaneously. We start by introducing bilinear classifiers and then we present the mathematical ex-
pressions related to the idea of learning cross-domain bilinear classifiers in a multi-task framework.
Finally, we show the application of our proposal for domain adaptation of deformable part-based
object detectors.

2.1 Bilinear Classifiers

The existing formulations of linear classification typically consider the feature x in a vector form
and the classifier in the form of f(x) = w′x, where w is the model parameter. The bilinear
classifiers extend these linear classifiers by using a matrix form of the features. Representing a
feature as a matrix X whose dimensions are denoted by d and c (X ∈ Rd×c), the bilinear classifier
can be formulated as: f(X) = Tr(W′X), W ∈ Rd×c, where Tr() is the trace operation. By
restricting the rank of W to be r ≤ min[d, c], we can write the parameter matrix in a decomposed
form, W = W′dWc, where Wd ∈ Rr×d and Wc ∈ Rr×c. Thus, the bilinear classifier can be written
as: f(X) = Tr(W′X) = Tr(W′cWdX).

For simplicity, we consider a binary classification problem. Assume we are given a set of training
data and label pairs {Xi, yi}, Xi ∈ Rd×c and yi ∈ {+1,−1}. A SVM is often used to optimize
the parameters W of the linear classifier by minimizing the following objective function: J(W) =
1

2
Tr(W′W) +C

∑
i L(yi,W,Xi), where Tr(W′W) is the regularization term, L is a loss function

which penalizes the error on the training samples, and C is used to trade off the loss on the training
sample versus the regularization term to control the accuracy. Note that Tr(W′W) is equivalent
to the Frobenius Norm, which can be denoted by ‖W‖2F . Equivalently, the objective function of a

bilinear classifier can be written as: J(Wc,Wd) =
1

2
‖W′cWd‖2F + C

∑
i L(yi,Wc,Wd,Xi). The

objective function is not convex but it can be solved by alternative optimization, e.g. by coordinate
descent as in [9].

2.2 Multi-task Bilinear Classifiers (MT-BL) for Domain Adaptation

Note that the bilinear classifier can be written as f(X) = Tr(W′cX̃), where X̃ = WdX, and X̃ ∈
Rr×c. Thus Wd is equivalent to a transformation matrix of dimension r× d and it maps the original
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d dimensional feature space to the r dimensional subspace. By using the bilinear classifier, we can
map the features from different domains into a common subspace, so that the mapped features are
likely to have similar distributions and an unbiased classifier can be learned in the common space.

When applying a bilinear classifier for the domain adaptation task, this problem can be formulated
in a multi-task learning (MTL) manner where the classifier weight Wc is the shared parameter
among different tasks. For the sake of simplifying the formulations, we consider the adaptation
from one source domain DS to one target domain DT . Also we assume the features in each domain
have the same dimension, e.g. X ∈ Rd×c, although our method can also handle heterogeneous
features. We assume that the rank of the common subspace is r and define PS ∈ Rr×d as the
transformation matrix for the source domain features and PT ∈ Rr×d for the target domain ones.
We denote by Wc ∈ Rr×c a common subspace classifier parameter matrix and we write the bilinear
classifiers for each domain as fS(X) = Tr(Wc

′PSX) and fT (X) = Tr(Wc
′PT X). Hence the goal

is to optimize the transformation matrices PS and PT , as well as the common subspace classifier
parameter matrix Wc. The multi-task learning optimizes all these parameter matrices jointly with
the following objective functions:

J(Wc,PS ,PT ) = JS(Wc,PS) + JT (Wc,PT ),

JS(Wc,PS) =
1

2
‖PS

′Wc‖2F + CS

∑NS

i L(yi,Wc,PS ,XS
i ),

JT (Wc,PT ) =
1

2
‖PT

′Wc‖2F + CT

∑NT

i L(yi,Wc,PT ,XT
i ).

(1)

Thus the minimization of (1) is a multi-task biconvex problem, where the alternative optimization
strategy, e.g. coordinate descent in [9] can be applied. By using a re-parameterizing trick, the
minimization of (1) can be translated into solving two standard Frobenius-norm-based SVMs. We
illustrate the two steps coordinate descent algorithms as follows:

(1) Fixing PS and PT , and optimizing Wc:

By denoting A = PSPS
′+ PT PT

′, W̃c = A
1
2 Wc, X̃

S

i = A−
1
2 PSXS

i and X̃
T

i = A−
1
2 PT XT

i , (1) can

be written as: J(W̃c) =
1

2
‖W̃c‖2F + CS

∑NS

i L(yi, W̃c, X̃S
i ) + CT

∑NT

i L(yi, W̃c, X̃T
i ).

(2) Fixing Wc and optimizing PS and PT :

Since PS and PT can be optimized independently, we give the formulation of the optimizing PS as
an example. Denoting A = WcW′c, P̃S = A

1
2 PS , and X̃S

i = A−
1
2 WcXS

i

′
, the objective function

of JS can be written as JS(P̃S) =
1

2
‖P̃S‖2F +CS

∑NS

i L(yi, P̃S , X̃S
i ). The same re-parameterizing

can be applied to optimize PT .

Finally, we obtain the optimum W̃c, P̃S and P̃T . The final classifier for the target domain can be
obtained by fT (X) = WcP′T X.

2.3 Domain Adaptation of Deformable Part-based Object Detectors

The bilinear model is well suited for computer vision problems since the visual data are usually in a
form of matrix. In this work, we apply the proposed method to the HOG feature based deformable
part-based model (DPM) [4]. Given an image I, an object hypothesis in a DPM is defined by
h = [p0, p1, . . . , pm], where pi, (i ∈ [0,m]) is the part location. The appearance feature Φa(I,h)
and spatial feature (deformation) Φs(I,h) are extracted from these part locations. For each part
we concatenate all the HOG cells horizontally and as each cell is a f dimensional feature vector,
we construct a feature matrix of dimensions f × ci, where ci is the number of cells in part pi.
Finally, we concatenate all the part feature matrices into a d × c, (c =

∑m
i ci), matrix. For the

spatial feature, we keep it in a vector form. Thus, the detection model of DPM can be written as
f(I,h) = Tr(W′aΦa(I,h)) + w′sΦs(I,h). To cope with the latent variables, i.e. pi, i ∈ [1,m],
the latent SVM is used to optimize the model parameters and refine the part locations alternatively
[4]. We incorporate the bilinear model with latent SVM by decomposing the appearance parameter

as Wa = W′cP, and the objective function is written as J(Wc,P,ws) =
1

2
‖W′cP‖2F +

1

2
w′sws +

C
∑N

i L(yi,Φa(Ii,h),Φs(Ii,h),Wc,P,ws), where L is a 0-1 loss function in [4]. We can apply
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Figure 1: Results of adapting a DPM pedestrian detector from synthetic data to work in TUD and
ETH pedestrian datasets.

the same multi-task formulas to DPM as in Sec 2.2 for domain adaptation. For example, when P is
fixed, we optimize Wc and ws in the latent SVM framework, and when Wc and ws are fixed, we
optimize P in a linear SVM objective function. Since Eq. (1) is none-convex, a good initialization
is required for obtaining the optimal. In practice, we calculate the PCA of HOG features from both
source and target domain samples, and use the first r eigenvectors as initial value of the P. The value
of r can be selected by validation as in [17] or subspace disagreement measure as in [5].

3 Experiments and Results
We evaluate our proposal in cross-domain pedestrian detection. Using the MT-BL DPM explained in
Sec 2.3, we adapt a pedestrian classifier from a synthetic virtual-world dataset [8, 13] to several real-
world datasets. In particular, we perfom the adaptation to the three subsets of the ETH [3] dataset
(ETH0, ETH1 and ETH2) and the TUD-Brussels dataset (TUD) [14]. We use 200 pedestrians
samples (randomly selected) from each target domain and compare with the following baselines:

SRC: Classifier trained with only the source domain samples, i.e., the synthetic ones.

TAR: Classifier trained with only target domain samples, i.e., the real-world ones.

MIX: Classifier trained with source + target domain samples.

ASVM: The regularization based domain adaptive SVM [18], trained with source samples and
adapted with the target domain ones.

We perform the evaluation following the Caltech pedestrian detection benchmark and report the
average miss rate versus false positive per image. We create five random train/test splits and we
average the results across them. The results are shown in Figure 1. Our method produces the highest
accuracy on the four target domain datasets demonstrating its ability to achieve a high detection
performance and to outperform other competitive domain adaptation approaches.

4 Conclusion
We proposed a multi-task bilinear method to jointly learn a domain-shared feature subspace and
a cross-domain discriminative classifier within it. Focusing on visual domain adaptation, we apply
this approach to the state-of-the-art deformable part-based detector in order to perform cross-domain
pedestrian detection. In particular, we adapt a detector from a virtual synthetic dataset to real-world
pedestrian datasets. The results on the Caltech pedestrian detection benchmark show that our method
significantly improves the detection performance of a pedestrian detector trained with synthetic data,
and outperforms other domain adaptation approaches. In the future, we would like to extend our
method to more challenging unsupervised visual domain adaptation tasks to cope with unlabeled
data from target domain.
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