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Abstract

Autonomous driving is a key factor for future mobility.

Properly perceiving the environment of the vehicles is es-

sential for a safe driving, which requires computing accu-

rate geometric and semantic information in real-time. In

this paper, we challenge state-of-the-art computer vision al-
gorithms for building a perception system for autonomous

driving. An inherent drawback in the computation of vi-

sual semantics is the trade-off between accuracy and com-

putational cost. We propose to circumvent this problem

by following an offline-online strategy. During the offline

stage dense 3D semantic maps are created. In the online

stage the current driving area is recognized in the maps

via a re-localization process, which allows to retrieve the

pre-computed accurate semantics and 3D geometry in real-

time. Then, detecting the dynamic obstacles we obtain a

rich understanding of the current scene. We evaluate quan-

titatively our proposal in the KITTI dataset and discuss the

related open challenges for the computer vision community.

1. Introduction

Autonomous driving is considered as one of the big chal-
lenges in the automotive industry. Reliable and affordable
autonomous vehicles would create a large social impact.
In particular, it is expected a reduction in road fatalities, a
more steady flow of traffic, a reduction of fuel consumption
and noxious emissions, as well as an improvement in driver
comfort and enhancement of mobility for elderly and handi-
capped persons. Accordingly, making autonomous our mo-
bility systems has been targeted by governments and indus-
try for the first part of next decade. An autonomous vehicle
needs to perceive its environment and acting (driving) ac-
cordingly for safely arriving to a given destiny. This paper
focuses on perception.

* This work is supported by the Spanish MICINN projects TRA2011-
29454-C03-01, TIN2011-29494-C03-02, Universitat Autònoma de
Barcelona PIF program and FPI Grant BES-2012-058280.
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Figure 1. Offline-Online strategy: (a) urban scene that shows the

input of our system, i.e., stereo images. (b) Offline 3D scene re-

construction for maps creation. (c) Offline scene semantic seg-

mentation of the 2D images to extend 3D maps with semantic

information. (d) Online semantic and geometric information re-

trieval and detection of new dynamic objects.

Human drivers rely on vision for perceiving the environ-
ment. However, in recent autonomous driving attempts, as
those in the DARPA Urban Challenge [6] and the demon-
strators shown by Google Inc., the perception stage highly
relies on an extensive infrastructure of active sensors such
as lidars to create 3D representations of the environment
(instantaneous 3D representations or permanent 3D maps),
lidars or radars for detecting dynamic obstacles, or dif-
ferential GPS to have an accurate position of the vehicle
within previously generated 2D road maps. Broadly speak-
ing, these sensors have the aim of providing a textureless
3D (geometry) route for planing the navigation. However,
in practice, this planing also requires semantic information
such as the type of the obstacles (e.g., vehicles, pedestri-
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ans) to account for their typical dynamics (e.g., speed, tra-
jectory), the state of regulatory traffic elements (e.g., traffic
signs, semaphores) to respect traffic rules (e.g., speed lim-
its or stopping), etc. This semantic information is extracted
by the use of cameras and computer vision algorithms. Ac-
cordingly, most prototypes of autonomous vehicles incor-
porate several cameras, even stereo rigs for complementing
the 3D information provided by active sensors.

Hence, in these approaches computer vision plays the
role of a complementary technology from the very begin-
ning. In opposition, we think that computer vision must
be at the core of perception for autonomous driving, i.e.,
as happens to be for human drivers. We do not claim that
no other sensor technology will be used, however, as re-
searchers we want to push computer vision to its limits and
then analyze which other technologies can really comple-
ment it for having more reliable autonomous vehicles. Note
that reducing the number of active sensors can significantly
reduce the cost of autonomous vehicles, thus, maximizing
the population that would have access to these products.

Beyond emulating human drivers, there are more reasons
to put vision at the center of perception. Many advanced
driver assistance systems (ADAS) available in the market
already rely on computer vision for performing lane de-
parture warning, intelligent headlights control, traffic sign
recognition, pedestrian detection, etc. Hence, for the auto-
motive industry camera-based systems have already moved
from prototyping to serial production. Cameras are very
cheap sensors (favoring affordability) with increasing reso-
lution and easy aesthetic integration in vehicles (a must for
selling). Moreover, their power consumption is negligible
(e.g., at least one order of magnitude less than active sensors
like lidars), which allows a vehicle to have a 360◦ view cov-
erage by using camera networks within the vehicles (e.g., in
the short term some vehicles will replace interior and ex-
terior rear-view mirrors by cameras). This low power con-
sumption is specially relevant for electric vehicles, other of
the big challenges for the automotive industry.

Overall, since current autonomous vehicle prototypes in-
clude camera sensors, we aim to obtain the most from com-
puter vision to face this challenge. In this paper we propose
a vision-based framework for computing the geometry and
semantics of the scene. This computation involves several
modules and some of them, e.g. semantic segmentation, are
very computationally demanding, thus unsuitable for real-
time systems.

To solve this critical problem we propose a novel strat-
egy to obtain both, semantic and geometric information in
real-time via an offline-online paradigm (see Fig. 1). First,
rich vision-based 3D semantic maps are created offline (see
Fig. 2Top). In other words, the information that represents
more computational cost is computed offline and stored.
Thus, the involved algorithms do not require to sacrifice ac-

curacy for the sake of speed. Afterwards, when a vehicle
re-visits the area, the information of the map becomes avail-
able in real-time by the visual re-identification of the area
and the retrieval of the semantic and geometric information
that match the current vehicle viewpoint (see Fig. 2Bottom).
The idea is that much of the semantic information is loca-
tion dependent, meaning that the information is anchored to
a spatial position. Therefore, by learning the semantics and
by associating them to a spatial representation (map) we can
recover much relevant information online. For planing the
instantaneous motion of the vehicle, the information recov-
ered from the map is extended by detecting the new dynamic
objects (vehicles and pedestrians) in the current scene.

The proposed strategy is analogous to the way humans
drive. After traversing an area several times, they have in
mind a picture of the static layout, including the shape of the
road, buildings, etc. The understanding of the static scene
is done efficiently due to the learned model, which allows
to anticipate critical areas and focusing on the localization
of new dynamic objects.

Under this paradigm, the 3D semantic maps can be ex-
tended with more information, which can be used for driv-
ing safely. For instance, the location of schools, hospitals,
charging points for electrical vehicles, complex roads, etc.
The visual information of such maps could be frequently
updated by collecting also the images that the autonomous
vehicles capture for their navigation. Moreover, from the
perspective of smart cities, the 3D visual information can
be used not only for autonomous navigation, but also for
assessing the state of the environment (e.g., does the road
surface has cracks or holes? are the leafs of the trees green
when they should?, etc.).

Beyond the possibilities that we envisage, the first ques-
tion is if our proposal is feasible, i.e., whether we can re-
trieve the 3D semantic information attached at the current
location of the vehicle in an accurate and real-time man-
ner or not. In this paper we focus on answering this ques-
tion given the state-of-the-art in computer vision for seman-
tic segmentation [32], 3D mapping [16], self-localization
[21, 26] and object detection [13]. To develop a proof-of-
concept we assume vehicles equipped with a forward fac-
ing stereo rig of color sensors. This lead us to use the
popular KITTI dataset [15] for quantitative evaluations. As
to the best of our knowledge, this vision-based perception
paradigm for autonomous driving has not been presented
before. Moreover, in this context, we point out the open
challenges for the core used computer vision methods.

The remainder of this paper is organized as follows.
Sect. 2 presents an overview over related work. Sect. 3 fo-
cuses on the offline 3D semantic map generation and the on-
line recovering of the semantics and 3D geometry. Review-
ing open problems for this offline-online approach. Sect. 4
presents current results. Sect. 5 draws the conclusions.
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Figure 2. Top: Framework for Offline 3D Semantic Map Generation. The right part of this framework labels one of both monocular

image-sequences (left or right) with a set of urban semantic classes. The right part generates a 3D map reconstruction from the stereo

image-sequences and combines that with the semantic labels to produce a 3D semantic map. Bottom: Framework for Online 3D Scene

Understanding. The first part of this framework recovers the vehicle pose for the input image with respect to the generated 3D map. Then,

the related geometry and semantics for that pose are retrieved and aligned to the input image. Finally, dynamic objects are detected.

2. Related Work

Autonomous navigation in urban environments requires
a deep and fast understanding of the scene for safe decision
making regarding path planning and obstacle avoidance [2,
12, 33]. In order to address the challenge of understanding
urban scenes, most research has focused in scene semantic
segmentation and 3D mapping as partial solutions.

In the context of urban scene semantic segmentation,
several novel approaches have been proposed [5, 31], which
have provided major improvements towards a good solution
for this problem. However, most of these algorithms work
in the image domain, where each pixel is classified with an
object label, missing important information such as general
3D structure and object geometry.

Another approach for addressing urban scene under-
standing is 3D mapping, which has been extensively studied
[1, 30]. Nevertheless, analogous to the aforementioned case
of semantic segmentation, 3D mapping approaches leave
aside critical information such as object categories, which
is necessary to correctly understand challenging urban envi-
ronments and the interactions between their components. In
fact, the popular Google self-driving project elaborates 3D
maps from Lidars and then semantic information is incor-
porated into the 3D maps by tiresome manual annotation.

Motivated by such drawbacks of semantic segmentation
and 3D mapping approaches, some recent works [28, 32]
have explored the idea of combining both to create semantic
3D reconstructions of outdoor environments, which results
in an advanced solution for the urban scene understanding
problem. Although these approaches reach a high level of
scene understanding, their use in real applications is still
limited due to their extreme computational cost.

Alternative approaches [18, 24] try to alleviate the men-
tioned extreme computational cost of scene understanding
methods, while keeping reasonable performance. Although
these works showed improvements towards the mentioned
objective, the reached efficiency makes them not totally
suitable for challenging real-time applications.

In this sense, the approach proposed in this paper goes
a step forward by factorizing the process of understanding
into an offline and an online stage. Additionally, we pro-
pose an efficient mechanism to retrieve the offline precom-
puted information when a vehicle needs it. This formulation
along with the usage of 3D semantic maps for accounting
for static scene elements, lead to a promising strategy to be
applied for real-time scene understanding.

3. Offline-Online Perception Approach

The vision-based understanding of urban scenes is a
complex process that usually leads to very time consuming
solutions, preventing from their use on-board vehicles. We
overcome this limitation by using two well-defined stages,
called offline and online (real-time on-board). The offline
stage (see Fig. 2Top) estimates the semantic and geomet-
ric information of the static world. This rich information is
then represented in a 3D semantic map as shown in Fig. 1.
This map is reused by the online stage, which happens when
a vehicle revisits a mapped place (see Fig. 2Bottom). There,
our mechanism of semantics retrieval will bring back all the
previously computed information that is relevant in our cur-
rent context. This becomes possible through an accurate
process of visual re-localization, that connects the offline
information with the online scene. This strategy provides
us with important information at a low computational cost,
which must be complemented with the knowledge of dy-
namic objects. To this end, state-of-the-art object detection
and tracking methods can be applied.

3.1. Offline 3D Semantic Map Generation

Despite the effort of the computer vision commu-
nity [25], semantic segmentation keeps being computation-
ally too expensive and often this issue is addressed at ex-
pense of loosing accuracy. The estimation of geometric
information suffers from similar problems. When this in-
formation is needed to perform navigation and planning
within cities, dense [16] and large reconstructions [30] are
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needed. Low-level navigation tasks require high accuracy,
what makes necessary the use of sophisticated methods [1],
again with high computational cost. Our approach circum-
vents these problems, from the application viewpoint, by
performing both tasks offline, favoring accuracy. Color
stereo sequences are fed to our offline map creation method,
which first performs semantic segmentation and afterwards
creates a 3D map enriched with semantic labels (Fig. 2Top).

3.1.1 Semantic Segmentation

Our semantic segmentation framework uses a Condi-
tional Random Field (CRF) based approach that performs
superpixel-wise classification on video-sequences. We con-
sider a set of random variables ζ = {ζ1, . . . , ζN}, repre-
senting superpixels. Each random variable takes a value
from a set of labels L, defined as L ={building, vegetation,

sky, road, fence, pole, sidewalk, sign, car, pedestrian, bicy-
clist}. Assigning labels to variables (superpixels) is done
by a CRF, which represents the conditional distribution of ζ
given a set of observations Y . In our case the observations
are scores from a SVM classifier.

Let define the graph G = (V , E), where V indexes the
nodes that correspond to random variables, and E is the set
of undirected edges representing compatibility relationships
between random variables. Also, Ni is defined as the set
of spatial neighbors of the random variable ζi. From these
elements our goal is to find the optimal labeling

ζ∗=argminζ E(ζ)=
∑

i∈V ψi(ζi;θ,Y )+
∑

i∈V

∑
j∈Ni

ψs(ζi,ζj ;θ,Y ) ,

with θ being the parameters of the CRF model learned in a
training stage. This minimization problem is solved using
a graph-cut based Alpha Expansion algorithm [4]. E(·) is
composed by unary and pairwise potentials.

Unary potentials ψi(ζi) are the scores obtained from
the semantic classifiers applied at each superpixel indepen-
dently after the over-segmentation of the image (done by
the Mean-shift algorithm [11]). Since we perform this over-
segmentation in continuous image sequences, we also con-
sider temporal coherence. This is done by assuming that
nearby superpixels and with similar colors should have sim-
ilar motion, as in [9]. Then, we describe each superpixel us-
ing the multi-feature variant [20] of TextonBoost algorithm
[29]. After that, we obtain the classification scores for each
superpixel with linear SVMs. On the other hand, for pair-
wise potentials ψs we use the differences in color between
neighboring nodes. These potentials penalize neighboring
nodes with different labels, depending on the color differ-
ences, i.e. ψs(ζi, ζj) = cijI[ζi ̸= ζj ], where I[·] is an in-
dicator function and cij is a similarity measure of the color
between the i-th and the j-th superpixels. This color sim-
ilarity measure comes from the norm of the difference be-
tween the mean RGB colors of the superpixels indexed by i
and j. This is, cij = ||ci − cj ||22, where ci is the 3D vector
of the mean of the RGB color of superpixel i.

Open challenges in semantic segmentation. Although
very promising, the accuracy of current semantic segmenta-
tion approaches is far from being the required for real driv-
ing applications. There are several reasons behind these lev-
els of accuracy, such as the lack of enough training images
(with its correspondent pixel-labeled ground truth) or the
lack of models that fully exploit available information like
the 3D or other source of high-level information. Regard-
ing the first problem, we have been working on the anno-
tation of several hundreds of urban images, but due to the
complexity of this task a common effort of the community
would be required. The last issue is fortunately receiving
more attention since new 3D-oriented CRFs have been pro-
posed, although it seems there is much to improve still.

3.1.2 3D Mapping

We have made use of some of the advantages of offline com-
puting to create a simple but accurate 3D mapping proce-
dure. Our method works by decoupling the estimation of
camera poses (trajectory) and 3D structure. This process
is carried out in four steps: (i) visual odometry (VO) esti-
mation; (ii) dense stereo computation and 3D point clouds
merging; (iii) 3D structure refinement; (iv) trajectory eval-
uation (see Fig. 2Top). During this process we assume a
calibrated stereo rig as our sensor; a device that major car
manufacturers are already incorporating in their cars.

Firstly, we extract a sparse set of features from the four
views produced by the stereo rig in previous and current
time instants. These features are based on a combination
of FAST-BRIEF [7, 8] methods and serve to associate fea-
tures along the four views. We estimate a large number of
matches Nfeat (in the order of thousands) and then feed a
VO method specialized on exploiting large amounts of con-
straints to estimate trajectories robustly [26]. To this end,
input matches are reduced to a compact structure called Re-
duced Measurement Matrix (RMM) which is used to eval-
uate Hcand models very quickly. As a last step, the most
promising hypotheses, Hsel, are combined with robust ℓ1-
averaging on the SE(3) manifold, which is the natural man-
ifold of camera poses. It is worth mention that, for this
application, no global coherence in the map is needed. The
approach can still work well with coherence in a local basis,
what makes the task of the VO algorithm simpler.

The next step consists of estimating dense stereo for each
pair of input images with the local stereo algorithm pre-
sented in [16]. Next, each disparity map is converted to
a point cloud with the calibration information and then they
are added to the global map. It is here, where the labels
from semantic segmentation are retrieved to the map, one
per voxel (in case of several labels for the same voxel, the
most voted would be selected). Afterwards, point clouds
are combined by integrating camera poses from step (i) and
projecting all the 3D structure accordingly.
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Figure 3. (a) Semantic 3D reconstruction of the sequence 00 from the KITTI [15] Visual Odometry benchmark, overlayed with the corre-

sponding OpenStreetMap image. In (b) the arrows associate the different segments with the 3D model. In (c) the top image corresponds to

the current frame which is related to the retrieved semantic 3D map, shown below it. The third image shows scene variations between the

current scene and the original map. The final image shows how these variations can be exploited to detect possible obstacles.

To improve the resulting map, the 3D structure is first
filtered out to remove spurious data. Given a set of points
ξX in the neighborhood of X , ξX = {X ′ : ∥X − X ′∥ <
ϵ}, when ξX = ∅ the point X is deleted. This simple test
improved our results notably. Voxels of dynamic classes
(e.g., car, pedestrian, etc.) are also deleted, since they do
not contribute to our purposes and would cause problems
during the semantics retrieval stage. As a consequence of
this process holes can appear in the map. In our experiments
this did not lead to any complication as they were spurious,
but we think this is an issue to address in the future.

Within this step we also re-estimate the position of
all remaining points by applying a Moving Least Square
method (MLS) [14]. MLS finds a polynomial p of de-
gree d that minimizes the cost function given by p∗ =
minp

∑N
i=1 (p(Xi)− f(Xi))2w(∥X −Xi∥). Here, w(·)

is a weight function tending to zero as their argument
increases. The obtained polynomial serves to produce
smoother surfaces and allow us to perform up-or-down sam-
pling of the point cloud according to our needs. Finally, we
evaluate the geometrical quality of the 3D map using Open-

StreetMap to guarantee a minimum level of quality in local
regions (see Fig. 3a). This process is currently done manu-
ally, but it could be unnecessary in the future.

Open challenges in mapping. The most critical problem
is how to deploy this technique at a large scale (e.g., city
size), since every street needs to be mapped. Projects like
OpenStreetView have taught us that these kind of problems
are solvable by having a fleet of distributed vehicles. We be-
lieve that the use of low-cost stereo sensors would make the
creation of a fleet affordable for city councils and even small
companies, leading to a practical solution. A closely related
problem is how to maintain a map useful during long peri-
ods of time. The representation used should be rich enough
to neglect the influence of small changes and should also
be easy to update. Updating a map after big changes of the
scene is still an open problem. It requires the detection of
the changes and their inclusion into the map. The complex-

ity of adding information to a map depends on the selected
representation. For instance, when parametric models are
used, modifying an area may lead to an expensive recompu-
tation process; while, if maps are presented as set of images,
updates just imply to add or change some images.

3.2. Online Retrieval of Semantics

The on-line semantics retrieval begins with the re-
localization of the vehicle. We use a combination of place
recognition, geometric alignment and VO. The place rec-
ognizer finds a previously visited area, simplifying the task
of the geometric aligner, which recovers the vehicle pose
(location and orientation) with respect to the map. Then,
to reduce computational complexity, the system keeps per-
forming re-localization by mean of VO, during NV O sec-
onds (currently set to two for a 25 fps acquisition system).

Place recognition is carried out by the algorithm de-
scribed in [21]. It uses a holistic descriptor to describe each
of the captured images during the map creation process, and
then creates a localization database with them. Afterwards,
when the method is called in the online stage, it provides
a rough position within the map. This is given in terms
of the most similar images to the current one (query im-
age). The algorithm was specifically designed to be tolerant
to changes of illumination and simple visual scene varia-
tions [21], which adds a fair level of robustness to the re-
localization process, allowing us to perform the task even
under different light or weather conditions.

After the place recognizer, Dynamic Time Warping
(DTW) is performed [21, 27] to avoid ambiguities in the re-
trieval process. DWT uses the information of a sequence of
consecutive matches to improve the results. Finally, the in-
formation provided by the holistic descriptor and the DWT
is refined by using geometric information. For this, while
constructing the map, we also extract multi-scale SURF [3]
features and store their associated descriptors together with
the 3D position of keypoints in the localization database.
During the online stage, SURF 2D features are computed in

4325



T
em

p
o
ral

S
em

an
tic

S
eg

m
en

tatio
n

S
em

an
tic

S
eg

m
en

tatio
n

R
etrieval

Building84.379.2

Tree92.884.8

Sign17.112.8

Road96.894.9

Fence62.949.9

Pole2.12.9

Sidewalk75.281.2

Overall85.681.1

Average61.658.0

Global51.247.1

Loop-closing (LC)
Dird image query + DTW 0.006s
Multi-scale SURF keypoints extraction (aprox. 200) 0.09s
Multi-scale SURF feat. extraction (aprox. 200) 0.07s
SURF feature matching 0.005s
Image-3DMap alignment 0.010s

Visual Odometry (VO)

VO feat. extraction & matching 0.01s
Robust camera-pose estimation 0.015s
Sub-total for semantic and geometric inf. retrieval

Object detection (in parallel @ 12 cores) 0.22s
Overall process per image (avg. case, VO) 0.245s
Overall process per image (worst case, LC) 0.456s

Table 3. Times for the online stage (retrieving & detection)

3D map creation

VO feat. extraction & matching 0.1s
Robust camera-pose estimation 0.2s
Dense stereo computation 0.26s
Point cloud ltering & MLS 3s

Topological map creation
Multi-scale SURF keypoints extraction 0.1s
Multi-scale SURF feat. extraction 0.2s
Dird image indexing 0.005s

Sub-total for 3D reconstruction 3.865s
Temporal semantic segmentation

Optical ow 28.5s
Super-pixels compt. 2.3s
Feature extraction 93s
Classication 0.28s
Inference 1.85s
Superpixel tracking 20s
Labels temporal consistency 10s

Overall process per image 159.8s

Table 2. Times for the semantic 3D map creation

155.93sTSS Sub-total

T
ab

le 1
. S

em
an

tic seg
m

en
tatio

n
 accu

racy
 (%

) fo
r a su

b
set o

f  K
IT

T
I seq

 0
7

.

T
S

S
: d

irectly
 ap

p
ly

in
g

 sem
an

tic seg
m

en
tatio

n
 (S

ect 3
.1

.1
), i.e., o

n
lin

e b
u

t 

n
o

t 
real-tim

e. 
S

S
R

: 
real-tim

e 
retriev

in
g

 
o

f 
th

e 
sem

an
tics 

fro
m

 
th

e 
p

re-

co
m

p
u

ted
 3

D
 sem

an
tic m

ap
  (S

ect. 3
.2

).

0.206s

T
S

S

S
S

R

the current image and we match them against the 3D points
of the database. Such 3D points are those retrieved for the
locations given by the DWT. From 3D ↔ 2D matches we
estimate the current vehicle pose by solving a PnP prob-
lem [22], which results very efficient.

For computational reasons, we complement the previous
method with the fast VO algorithm proposed by [26]. After
a satisfactory localization is achieved, VO is activated and
performs the localization during several frames, until the
previous procedure is called back again.

Open challenges in re-localization. The main limita-
tion of current place recognition methods is in their capabil-
ity of coping with extreme visual changes due to seasonal
changes and other environmental effects. This topic is gain-
ing recognition in the literature [10, 19, 21, 23], but still is
a young problem. At the present, the most solid approach
seems to be to maintain a scheme of frequent updates of the
desired areas, so reducing the magnitude of the changes.

4. Experiments

To validate our approach we require at least two differ-
ent sequences of a common area; the first sequence is used
to build the 3D semantic map offline, while the second is
for recovering the semantics online. We also require these
sequences to contain stereo and colour information. At this
point authors would like to highlight the absence of this kind
of datasets in the public domain. The closest dataset to our
requirements is the KITTI benchmark suite [15] as it con-
tains urban environment image-sequences taken from a car,
what recreates the conditions of our problem and also in-
cludes two different sequences with a partial overlapping.
Such sequences are the 00 and 07 from the Visual Odom-
etry dataset, which also include stereo and color data. The
overlap ranges from frame 2607 to 2858 in sequence 00 and

from 29 to 310 in sequence 07. No further comparison with
other sequences could be done due to the aforementioned
absence of publicly available data, although we consider it
enough as proof-of-concept. All the experiments were car-
ried out in an Intel Xeon 3.2GHz with 64GB of RAM and
12 processing cores, although this parallelism is exploited
only by the object detector that we include for measuring
the speed of a more complete online system.

4.1. Offline 3D Semantic Mapping

The extraction of the semantic information starts by
over-segmenting the images with an average of Nsp = 500
superpixels per image and then describing them by a combi-
nation ofNft = 5 complementary features. After that, linear
SVMs are fed with the calculated features in order to clas-
sify each superpixel in a one-vs-all fashion. The classifica-
tion scores are combined with color similarity histograms
between neighboring superpixels in a pairwise CRF to in-
fer the most probable class label for each superpixel, as ex-
plained in Sect.3.1.1 (see Fig. 1c). In addition to the 70
ground truth images of the KITTI odometry dataset released
by [32], we have manually annotated a set of 146 images
more. From the set of 216 images we use 170 for training
and 46 for testing. A quantitative evaluation of our semantic
segmentation method is summarized in Table 1(right-row).

In order to create the 3D map we estimate the vehicle
trajectory, extracting an average of Nfeat = 3000 features
per image and then feeding them to the visual odometry
method (set up with Hcand = 10000 and Hsel = 5000).
The result of dense stereo and point cloud merging was up-
sampled by MLS (d = 20), leading to a final point cloud
with more than 2 billion points (stored in an efficient octree
structure). For the topological layer we included about 1500
multi-scale features, along with their associate 3D informa-
tion, per each of the 4541 training images1. The quality
of the generated map is shown by Fig. 3(a,b). Thanks to
OpenStreetMap we can see that our map is geometrically
correct, and even semantics are matched (see how vegeta-
tion regions and buildings coincide).

4.2. Online Retrieval of Semantics

We measure the retrieving quality of both, semantic and
geometric information, for the map created from sequence
00. Again the testing sequence is 07, due to its partial
overlapping with 00. The system starts localizing itself by
means of the topological layer and the loop-closure mecha-
nism. In our experiments, the topological layer presents per-
fect precision for a recall of 0.64. These results, although
promising, should be improved for real applications. The
average pose alignment errors for the 282 images of testing
remains under 20cm for the translation and 0.6deg for the
rotation, allowing for an accurate alignment.

1Labelled images available at www.cvc.uab.es/adas/s2uad
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Vegetation Sidewalk Building Fence Road Car Sky Pole

Testing images Testing images aligned w.r.t. Semantic 3D Map Training images

Hole

Figure 4. Semantics retrieval and object detection. The arrow highlight changes between the training and testing scenes. In particular, it is

illustrated how our approach deals with cases such as objects that disappear in the testing scene with respect to the training.

As our alignment is precise, the semantic information
can be correctly retrieved, matching the correct areas of
the current image. To validate this in a quantitative fashion
we have manually labeled 30 extra image of sequence 07,
which were uniformly sampled from the area overlapping
with sequence 00. The labeled images served to evaluate the
difference in precision of running the Temporal Semantic
Segmentation (TSS) algorithm on the images and perform-
ing the proposed semantic segmentation retrieval (SSR). To
this end, we only consider the static classes and ignore the
holes from the training sequences. Table 1 shows average
precision per class for both methods. It can be seen that
crucial classes, such as road or sidewalk are accurately re-
trieved, while the remaining classes are still fairly recov-
ered. In the case of sidewalk, better results are achieved due
to subtle variations between sequence 00 and 07 for the area
under study, leading to a better segmentation of the training
sequence and to a final higher accuracy. These results posi-
tion our approach as a promising alternative to address the
problem of understanding urban environments.

From a qualitative perspective, Fig. 4 illustrates the re-
sults after retrieving semantic and geometry information to
the current testing images. The retrieved information is just
partial in regions where the depth is not accurate enough
(e.g., top of buildings), although this does not compromise
the approach performance. Moreover, as dynamic objects
are removed from the map, holes might appear. This phe-
nomenon is shown by Fig. 4Top, where the retrieved infor-
mation has a clear hole due to the presence of a car in the
images used for the reconstruction of the scene. This prob-
lem can be solved by updating the map each time the same
area is traversed. Fig. 3c shows an example of the retrieved
semantic and geometric information.

4.3. Timing Performance

Analyzing Tables 2 and 3 we see that our proposal is bet-
ter suited for real-time performance. The cost of comput-
ing high accurate semantic segmentation ascends to 156s
per image, while creating a 3D map that incorporates that
information along with relevant geometry takes just four

more seconds. As Table 2 shows, the offline extra seconds
required for the 3D map creation, allows to later retrieve
all semantics and geometry in real-time. This retrieving is
based on the self-localization process that takes 0.21 sec-
onds on average, when performing loop-closure. However,
after the closure, visual odometry takes the control during
several frames, what leads to better times and the possibility
to have semantic and geometric information in real-time.

Additionally, in Table 3 we include the running time for
the part-based object detectors (vehicles and pedestrians)
[13], which in our current implementation is 0.22s per im-
age. However, it is important to note that this time can be re-
duced by using state-of-the art detection approaches, which
exploit stereo information [17].

4.4. Extensions

Due to the versatility of our approach, there are different
extensions that can be applied to support the online scene
understanding. For instance, dynamic object detection can
be constrained to specific areas of the images. As proof-of-
concept we use a retrieved model to compute the discrep-
ancy with corresponding current scene by means of image
analysis techniques. From this variation we can focus our
attention in more specific areas to look for objects. Fig. 3c
illustrates this case, where the possible positions of dynamic
obstacles are highlighted to ease detection. Furthermore,
due to the properties of our maps it is possible to keep
adding further relevant information about the urban context,
opening a door for high-level reasoning in real-time.

5. Conclusions
We have proposed a novel paradigm to address the ef-

ficiency problems of vision-based autonomous driving ap-
proaches in order to perform real-time understanding of the
environment. To this end we have designed a novel offline-
online strategy which has proved to be very efficient and
precise. During the offline stage a 3D map of a large ur-
ban environment is created and then extended with semantic
information about the fundamental elements of the scene.
This map is brought to life when a previously mapped area
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is visited and, in consequence, all the semantic and geo-
metrical information is retrieved to the current image. The
retrieval process is accurate enough and we showed its pos-
sible use for real-time obstacle spotting. Furthermore, we
have presented good qualitative results on the challenging
KITTI dataset for urban environments. From a quantitative
point of view, we have demonstrated the benefits of using
our strategy in terms of efficacy and real-time capabilities.

As future work it is important to address several of the
presented open problems, which are critical for the cor-
rect implantation of this strategy. Scalability issues require
further attention in order to extend this approach to city-
size maps. Furthermore, a map upload strategy would be
required in order to accommodate incidental changes in
“static” structures. Both, semantic segmentation and object
detection methods must be improved in terms of accuracy.
In the case of the former, more ground truth data is needed
to achieve better results. Finally, but equally important, the
self-localization needs to be improved in terms of better re-
call and further tolerance to severe visual changes.
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