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Abstract. Pedestrian classifiers decide which image windows contain a pedes-

trian. In practice, such classifiers provide a relatively high response at neigh-

bor windows overlapping a pedestrian, while the responses around potential false

positives are expected to be lower. An analogous reasoning applies for image

sequences. If there is a pedestrian located within a frame, the same pedestrian

is expected to appear close to the same location in neighbor frames. Therefore,

such a location has chances of receiving high classification scores during several

frames, while false positives are expected to be more spurious. In this paper we

propose to exploit such correlations for improving the accuracy of base pedes-

trian classifiers. In particular, we propose to use two-stage classifiers which not

only rely on the image descriptors required by the base classifiers but also on the

response of such base classifiers in a given spatiotemporal neighborhood. More

specifically, we train pedestrian classifiers using a stacked sequential learning

(SSL) paradigm. We use a new pedestrian dataset we have acquired from a car to

evaluate our proposal at different frame rates. We also test on well known dataset,

Caltech. The obtained results show that our SSL proposal boosts detection accu-

racy significantly with a minimal impact on the computational cost. Interestingly,

SSL improves more the accuracy at the most dangerous situations, i.e. when a

pedestrian is close to the camera.

1 Introduction

Localizing humans in images is key for applications such as video surveillance, avoid-

ing pedestrian-to-vehicle collisions, etc. Developing a reliable vision-based pedestrian

detector is a very challenging task with more than a decade of history by now. As a

result, a plethora of features, models, and learning algorithms, have been proposed to

develop the pedestrian classifiers which are at the core of pedestrian detectors [10]. The

research for boosting the accuracy of pedestrian classifiers has followed different lines.

Some authors have researched image descriptors well-suited for pedestrians (e.g., HOG

[4], HOG+LBP [21], Haar+EOH [11], others have researched different image modal-

ities (e.g., appearance+depth+motion [22], [8]), others have focused on the pedestrian

model (e.g., DPM [9], [17], [14]. The outcome of each of the above mentioned propos-

als is a pedestrian classifier, termed here as base classifier, which provides a relatively

high response at neighbor windows overlapping a pedestrian. In fact, non-maximum

suppression (NMS) is usually performed as last detection stage in order to merge over-

lapped detections to a single one. An analogous reasoning applies for image sequences.
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If there is a pedestrian located within a frame, the same pedestrian is expected to appear

close to the same location in neighbor frames, while false positives are expected to be

more spurious. In fact, this may allow removing such undesired spurious by the use of

a tracker. In this paper we propose to exploit such expected response correlations for

improving the accuracy of the classification stage itself. We propose to use a two-stage

classification strategy which not only rely on the image descriptors required by the base

classifiers, but also on the response of the own base classifiers in a given spatiotem-

poral neighborhood. More specifically, we train pedestrian classifiers using a stacked

sequential learning (SSL) paradigm [2].

Temporal SSL involves the analysis of window volumes, these volumes may change

depending on the application, the target conditions and camera movement. In this pa-

per, we are specially interested in on-board pedestrian detection within urban scenarios.

Therefore, camera and targets are in movement. Accordingly, in this paper we test our

SSL approach for a fixed neighborhood (i.e., fixed spatial window coordinates across

frames) and for an scheme relying on an ego-motion compensation approximation (i.e.,

varying spatial window coordinates across frames). Moreover, in order to assess the de-

pendency of the results with respect to the frame rate, we acquired our own pedestrian

dataset at 30fps by normal driving in an urban scenario. This new dataset is used as main

guide for our experiments, but we also complement our study with other challenging

dataset publicly available, Caltech. In this paper we start by using a competitive base-

line in pedestrian detection [7], namely a holistic base classifier based on HOG+LBP

features and linear SVM. Note that HOG+LBP/linear-SVM is base of different more

sophisticated detectors: deformable models (DPM) [9], occlusion handling [21], [15],

node experts in random forest [16] and domain adaptation [18]. Altogether, we think

that HOG+LBP/linear-SVM is a proper baseline to start assessing our proposal. More-

over we have extended this baseline with the HOF [20] motion descriptor that comple-

ments the appearance and texture features of the baseline. Overall, the obtained results

show that our spatiotemporal SSL proposal boosts detection accuracy significantly. Es-

pecially, when the pedestrians are close to the camera, i.e. in the most critical situations.

Therefore, encouraging to augment the study for other pedestrian base classifiers as well

as other object categories.

The rest of the paper is organized as follows. In Sect. 2 we review some works

related to our proposal. Section 3 briefly introduces the SSL. In Sect. 4 we develop our

proposal. Section 5 presents the experiments carried out to assess our spatiotemporal

SSL, and discuss the obtained results. Finally, Sect. 6 draws our main conclusions.

2 Related work

The use of motion patterns as image descriptors was already proposed as an exten-

sion of spatial Haar-like filters for video surveillance applications [19], [3], [12] and

for detecting human visual events [13]. In these cases, original spatial Haar-like filters

were extended with a temporal dimension. Popular HOG descriptor was also extended

using optical flow [5], [20]. In all cases motion information was complemented with

appearance information (i.e., Haar/HOG for luminance and/or color channels). In con-

trast with these approaches, our proposal does not involve to compute new temporal

image descriptors as new features for the classification process. As we will see, we

use the responses of a given base classifier in neighbor frames as new features for our
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Fig. 1. SSL learning. See main text in Sect. 3 for details.

SSL classifier. In fact, our proposal can also be applied to base classifiers that already

incorporate motion features. Therefore, the reviewed literature and our proposal are

complementary strategies. Focusing on single frames, it has been recently shown how

pedestrian detection accuracy can be boosted by analyzing the image area surrounding

potential pedestrian detections. In particular, [6], [1] follow an iterative process that uses

contextual features of several orders for progressively enhancing the response for true

pedestrians and lowering it for hallucinatory ones. Our SSL proposal does not require

new image descriptors and is not iterative, which makes it inherently faster. Moreover,

we treat equally spatial and temporal response correlations.

Finally, we would like to clarify that our SSL proposal is not a substitute for NMS

and tracking post-classification stages. What we expect is to allow these stages to pro-

duce more accurate results by increasing the accuracy of the classification stage.

3 Stacked sequential learning (SSL)

Stacked sequential learning (SSL) was introduced by Cohen et al. [2] with the aim of

improving base classifiers when the data to be processed has some sort of sequential

order. In particular, given a data sample to be classified, the core intuition is to consider

not only the features describing the sample but also the response of the base classifier

in its neighbor samples. Figure 1 summarizes the SSL learning process that we explain

in more detail in the rest of this section.

Let τ be an ordered training sequence of cardinality N. The SSL approach involves

to select a sub-sequence for training a base classifier, CB, and the rest to apply CB and so

training the SSL classifier, CSSL. If this is done once, then the final classifier CSSL would

be trained with less than N samples. Thus, to avoid this, it is followed a cross-validation

style were τ is divided in K > 0 disjoint sub-sequences, τ =∪K
k=1τk∧ i 6= j ⇒ τi∩τ j = /0,

and K rounds are performed by using a different subset each round to test the CBk
and

the rest of subsets for training this CBk
. At the end of the process, joining the K sub-

sequences processed by the corresponding CBk
, we can have N augmented training

samples for learning CSSL. k = 1 means to train the CB and CSSL on the same training

set, without actually doing partitions.

Let us explain what means augmented training samples. The elements of τ , i.e., the

initial training samples, are of the form < xn;yn >, where xn is a vector of features with
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Fig. 2. Different types of neighborhood for SSL. See main text in Sect. 4.1 for details.

label yn. Therefore, the elements of each sub-sequence τk are of the same form. As we

have mentioned before, during each round k of the process, a sub-sequence τ ′′ is se-

lected among {τ1, . . . ,τK}, while the rest are appended together to form a sub-sequence

τ ′. From τ ′ it is learned CBk
and applied to τ ′′ to obtain a new τ ′′′. The elements of

τ ′′′ are of the form < (xn,sn);yn >, where we have augmented the feature xn with the

classifier score sn = CBk
(xn). Therefore, after the K rounds, we have a training set of N

samples of the form < (xn,sn);yn >. It is at this point when we can introduce the con-

cept of neighbor scores into the learning process. In particular, the final training samples

are of the form< (xn,N (sn,T ));yn >, where N (sn,T ) denotes a neighborhood of size

T > 1 anchored to the sample n.

4 SSL for pedestrian detection

In this section, without loosing generality, we will assume the use of the past neigh-

borhood (Sect. 3) to illustrate and explain our SSL approach (use previous images to

do detection in the current one). Actually there is no need to save the previous images,

saving the already computed scores is enough to compute the current SSL descriptor

making the computation of SSL very computational efficient.

4.1 Spatiotemporal neighborhoods for SSL
For object detection in general and for pedestrian detection in particular, applying SSL

starts by defining which are the neighbors of a given window under analysis. In learning

time, such a window will correspond either to the bounding box of a labeled pedestrian

or to a rectangular chunk of the background. In operation time (i.e., testing), such a win-

dow will correspond to a candidate generated by a pyramidal sliding window scheme or

any other candidate selection method. In this paper we assume the processing of image

sequences and, consequently, we propose the use of a spatiotemporal neighborhood.

Temporal SSL involves the analysis of window volumes. Therefore, there are sev-

eral possibilities to consider (see Fig. 2). Let us term as Wf the set of coordinates defin-

ing an image window in frame f , and V f = vol(∪T−1
t=0 Wf−t) the window volume defined

by a temporal neighbor of T frames. The simplest volume is obtained by assuming

fixed locations across frames, which we term as projection approach. In other words,

Wf = Wf−1 = ... = Wf−(T−1). Another possibility consists in building volumes taking

into account motion information. For instance, Wf =Wf−1+ tOF(Wf−1), where tOF(Wf−1)

is a 2D translation defined by considering the optical flow contained in Wf−1, and ′+′

stands for summation to all coordinates defining Wf−1.

Spatial SSL involves the analysis of windows spatially overlapping the window of

interest (see Fig. 2). For instance, we can fix a 2D displacement ∆ = (δx,δy) and nx

displacements in the x axis, to the left and to the right, an analogously for the y axis

given a ny number of up and down displacements.

Our proposal combines both ideas, the temporal volumes and the spatial overlapping

windows, in order to define the spatiotemporal neighborhood required by SSL (Sect. 3).
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Fig. 3. Two-stage pedestrian detection based on SSL. See main text in Sect. 4.3 for details.

4.2 SSL training

As usual, we assume an image sequence with labeled pedestrians (i.e., using bound-

ing boxes) for training. Negative samples for training are obtained by random sampling

of the same images, of course, these samples cannot highly overlap labeled pedestri-

ans. The cross-validation-style rounds of SSL (Sect. 3) are performer with respect to

the images of the sequence, not with respected to the set of labeled pedestrians and

negative samples as it may suggest the straightforward application of SSL (note that

pedestrian/negative labels are for individual windows not for full images). Moreover, as

we have seen in Sect. 4.1, the neighborhood relationship is not only temporal but spatial

too. The training process is divided in two stages. First, we train the auxiliary classifiers

(CBk
) as usual using three bootstraping rounds. Then we train the SSL classifier (using

final CBk
as auxiliary), again we run three bootstrapping rounds for obtaining the final

classifier (CSSL). Using the full training dataset, we also assume the training of a base

classifier CB. Another possibility is to understand the different CBk
as the result of a

bagging procedure and ensemble them to obtain CB. Without loosing generality, in this

paper we have focused on the former approach.

4.3 SSL detector

The proposed pedestrian detection pipeline is shown in Fig. 3. As we can see there

are two main stages. The first stage basically consists in a classical pedestrian detec-

tion method relying on the learned base classifier CB. In Fig. 3 we have illustrated the

idea for a pyramidal sliding window approach, but using other candidate selection ap-

proaches is also possible. Detections at this stage are just considered as potential ones.

Then, the second stage applies the spatiotemporal SSL classifier, CSSL, to such potential

detections in order to reject or keep them as final detections.

There are some details worth to mention. First, the usual non-maximum suppression

(NMS) is only done for the output of the second stage. Second, for ensuring that true

pedestrians reach the second stage, we apply a threshold on CB such that it guarantees

a very high detection rate even having a very high rate of false positives. In our exper-

iments this usually implies that while the CB processes hundred of thousands windows

(for pyramidal sliding window), CSSL only process a few thousands. Third, although in

Fig. 3 we show pyramids of images for a temporal neighborhood of T frames, what we

actually keep from frame to frame are the already computed features, so that we com-

pute them only once. However, this depends on the type of temporal neighborhood we

use (Sect. 4.1). For instance, using projection style no feature are needed to keep (i.e.,

keeping the classification scores is enough). However, if we use optical flow we may

need to compute features in previous frames if the window under consideration does

not map to a location where they were already computed.
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5 Experimental results

Protocol. As evaluation methodology we follow the de-facto Caltech standard for pedes-

trian detection [7], i.e. we plot curves of false positives per image (FPPI) vs miss rate.

The miss rate average in the range of 10−2 to 100 FPPI is taken as indicative of each

detector accuracy, i.e.. the lower the better. Moreover, during testing we consider three

different subset: Near subset include pedestrians with height equal or higher than 75

pixels, medium subset include pedestrian between 50 and 75 pixel height. Finally we

group the two previous subset in the reasonable subset (height >= 50 pixels).

Table 1. Evaluation of SSL over different datasets, frame rates and pedestrian sizes. For FPPI

∈ [0.01,1], the miss rate average % is indicated.

Dataset FPS Experiment Near Medium Reasonable

CVC08

Any Base: HOG+LBP 39.71 50.83 45.91

3

SSL(Base) Proj. - OptFl. 36.03 - 36.72 50.01 - 50.04 44.40 - 44.02

Base+HOF 47.98 56.65 50.88

SSL(Base+HOF) Proj. 37.62 52.21 45.47

10

SSL(Base) Proj. - OptFl. 35.49 - 34.79 50.22 - 49.42 43.56 - 42.10

Base+HOF 39.24 52.37 42.43

SSL(Base+HOF) Proj. 29.42 44.62 37.13

30

SSL(Base) Proj. - OptFl. 34.18 - 34.01 49.84 - 48.04 42.90 - 41.73

Base+HOF 37.81 53.39 38.78

SSL(Base+HOF) Proj. 27.37 46.53 35.85

Caltech 25

Base 45.4 82.3 59.4

SSL(Base) Proj. - OptFl. 40.6 - 38.9 81.2 - 80.4 59.4 - 57.6

Base+HOF 33.8 78.4 52.9

SSL(Base+HOF) Proj. 32.0 77.1 51.6

CVC08 On-board Sequence (CVC08). Since the temporal axis is important for the

SSL classifier, we acquired our own dataset to be sure we have stable 30 fps sequences.

The sequences were acquired on-board under normal urban driving conditions. The

images are monochrome and of 480× 960 pixels. We used a 4mm focal length lens, so

providing a wide field of view. We drove during 30 minutes approximately, giving rise

to a sequence of around 60,000 frames. Then, using steps of 10 frames we annotated all

the pedestrians4. This turns out in 7,900 annotated pedestrians, 5,400 reasonable and

non occluded. We have divided the video sequence into three sequential parts, the first

one for training (3,600 pedestrians), the last one for testing (1300 pedestrians), in the

middle we have leaved a gap for avoiding testing and training with the same persons.

Caltech dataset. We have also used other popular dataset acquired on-board. The

Caltech dataset [7], which contain 3,700 reasonable pedestrians for training. It is worth

to mention that the images were acquired at 25 fps.

Base detectors. For the experiments presented in this section we use our own im-

plementation of HOG and LBP features, using TV-L1 [23] for computing optical flow,

we obtain HOF features [20] as well. We call Base to the HOG+LBP/Linear-SVM and

Base+HOF to the HOG+LBP+HOF/Linear-SVM.

Experiments. Experiments are based on the ST-SSL with (∆x,∆y,∆ f ) = (3,3,5).
In preliminary experiments we tested several values of K (Fig. 1), obtaining very similar

results, thus we set K = 1 for speed up the training. In table 1 we show the results for

the SSL experiments. As baseline detectors we use the Base and Base+HOF. The ex-

periments are run over the different datasets, and frame rates (CVC08). We tested them

4 Publicly available in: http://www.cvc.uab.es/adas/site/?q=node/7
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Fig. 4. Results for CVC08 and Caltech datasets. At the top row there are the 30fps, 10fps and 3fps

cases of CVC08 using the near testing subset. The last two cases are obtained by sub-sampling

the video sequence, but always keeping the same training and testing pedestrians. At the bottom

row there are the experiments over the near, medium and reasonable testing of Caltech dataset.

for different ranges of pedestrian sizes. We observe significant accuracy improvements

for all the tested datasets comparing the baseline detector and its SSL counterpart. For

instance, in CVC08 near with SSL(Base+HOF) we obtain an accuracy improvement of

ten points approximately. Also, significant accuracy improvements are obtained for all

the tested frame rates (30 fps, 10 fps, 3 fps) of CVC08 dataset. Besides, we observe

an improvement due to the optical flow in the volume generation at high frame rates.

However, no significant difference is observed at low frame rates. The SSL accuracy im-

provement is more clear for the near pedestrians. In Fig. 4 we plot the accuracy curves

obtained for some representative experiments.

Discussion. SSL approach outperforms its baseline in almost all the tested config-

urations. However, the improvement is more clear for near pedestrians at high frame

rates. If we generate the past neighborhood over the far away pedestrians, we should

expect a past neighborhood with pedestrians smaller than the minimum pedestrian size

that the base detector can detect. That is why the SSL improvement is not so clear for

the medium subset. However, in near pedestrians past neighborhood is more probable

to find a history of confident responses. This is a very relevant improvement since for

close pedestrians the detection system has less time to take decisions like braking or

doing any other manoeuvre. Regarding the neighborhood generation approaches, the

optical flow slightly improves the projection one as it captures the movement of the

pedestrians in the temporal neighborhood.

6 Conclusion
In this paper we have presented a new method for improving pedestrian detection based

on spatiotemporal SSL. We have shown how even simple projection windows can

boost the detection accuracy in different datasets acquired on-board. We have shown

that our approach is effective for different frame rates. In this paper we have focused

on HOG+LBP/Linear-SVM and HOG+LBP+HOF/Linear-SVM pedestrian base clas-
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sifiers, thus, our immediate future work will focus on testing the same approach for

other base classifiers of the pedestrian detection state-of-the-art. Regarding the improve-

ment obtained using optical flow neighborhood, we want to further explore different

approaches for dealing with the neighborhood generation for moving pedestrians.
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