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Abstract

Semantic understanding of urban street scenes through visual
perception has been widely studied due to many possible practical
applications. Key challenges arise from the high visual complexity
of such scenes. In this paper, we present ongoing work on a new
large-scale dataset for (1) assessing the performance of vision al-
gorithms for different tasks of semantic urban scene understand-
ing, including scene labeling, instance-level scene labeling, and
object detection; (2) supporting research that aims to exploit large
volumes of (weakly) annotated data, e.g. for training deep neural
networks. We aim to provide a large and diverse set of stereo video
sequences recorded in street scenes from 50 different cities, with
high quality pixel-level annotations of 5000 frames in addition to
a larger set of weakly annotated frames. The dataset is thus an
order of magnitude larger than similar previous attempts.

Several aspects are still up for discussion, and timely feed-
back from the community would be greatly appreciated. Details
on annotated classes and examples will be available at www.
cityscapes-dataset.net. Moreover, we will use this web-
site to collect remarks and suggestions.

1. Introduction

Over the last decade, the problem of scene understanding has
increasingly gained attention in the computer vision community
[11]. Research on this topic has been done from different points
of view (e.g., semantic [25] or holistic [7]) and in different appli-
cation scenarios (e.g., outdoors [26] and indoors [9]). In particu-
lar, understanding outdoor scenarios through visual data has been
widely researched due to its high visual complexity and many pos-
sible practical applications. Challenges arise from a large number
of different objects in the scene, both static and dynamic, with a
large variation in scale. Despite this complexity, the ability to cor-
rectly analyze the environment is critical for the development of
autonomous systems such as self-driving cars [5, 6].

In the last few years, we have experienced great advances to-
ward visually understanding outdoor scenarios. Increasingly so-
phisticated approaches have been developed (e.g., [7, 18, 22]) and
more challenging datasets have been created to push forward the
development of these approaches. In particular, the KITTI Vision
Benchmark Suite [8] supports and assesses vision algorithms in the
context of autonomous driving. This benchmark includes datasets
for stereo vision, optical flow, visual odometry, 3D object recog-
nition, tracking, and road estimation. Furthermore, the task of a

Figure 1. Example images (2MP, color, HDR) with annotations from our
dataset. The labels are encoded in different colors. Note that instances of
traffic participants are annotated individually.

semantic understanding of urban scenarios is addressed by several
datasets, such as CamVid [1], Leuven [13], and Daimler Urban
Segmentation [21].

Progress in computer vision in recent years has also been
driven by datasets that pushed the boundaries in terms of scale. Ex-
amples include ImageNet [2, 19], PASCAL VOC [4] and its exten-
sions (e.g., PASCAL-Context [16]), Caltech Pedestrians [3], La-
belMe [20], Microsoft COCO [14,15], Yahoo Flickr CC100m [24],
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and Places [27]. Such large-scale datasets have paved the way for
the success of vision algorithms that can leverage large amounts of
data, e.g. deep learning methods [12,23]. To the best of our knowl-
edge, there is no large-scale dataset available for semantic urban
scene understanding, yet would enable further significant progress
in this research area.

To fill this gap, we present ongoing work on creating a novel
dataset for semantic urban scene understanding, along with a
benchmark of different challenges. Annotations of a large set of
classes and object instances, high variability of the urban scenes, a
large number of annotated images, and various metadata are some
of the highlights of the presented dataset. Examples of our anno-
tations can be seen in Fig. 1.

2. Dataset Specifications

Designing a new large-scale dataset involves a multitude of de-
cisions, including the type of annotations, images, the metadata,
and an estimation of a reasonable volume of annotated data to
achieve. In the following, we describe our design choices in order
to create a dataset focusing on semantic understanding of urban
environments.

Annotation type. We chose to focus on semantic, instance-wise,
dense pixel annotations. Datasets with this type of annotations
are the scarcest among existing ones, mainly because annotating
images in this way is an expensive and tedious process. Neverthe-
less, we believe these annotations are the most informative ones
for training scene understanding algorithms, and the ones that en-
able the richest set of evaluations. We also think that these annota-
tions easily allow for future extensions of the dataset; e.g., adding
finer-grained categories to already segmented instance regions is
easier than the initial region boundary annotation.

Our annotations enable out-of-the-box evaluations for scene la-
beling at the image and instance level, as well as object detection.
We discuss the benchmark suites and evaluation metrics for these
tasks in detail in Sec. 3.

Labeled classes. We annotate 25 different labels, selected by
striking a balance between common classes, different applications,
and covering a large part of the image with “non-void” classes,
while trying to limit the annotation effort. Table 1 lists the specific
labels we consider.

Image diversity. The high variability of outdoor urban streets
makes accurate scene understanding very challenging. Unfortu-
nately, most available datasets fall behind in capturing this high
variance. For instance, the KITTI dataset contains 6 h of video
material, all recorded in the Karlsruhe, Germany, metropolitan
area. Out of these recordings, only 25% are publicly available and
roughly 430 images have pixel-level semantic annotations, pro-
vided by different independent research groups. With our novel
dataset, we tackle this issue by focusing on a high diversity be-
tween annotated images in order to capture a wider range of street
scenes than any previous dataset. To this end, we record in approx-
imately 50 different cities to reduce city-specific overfitting. We
further acquire images during the span of several months, cover-
ing spring, summer, and autumn. Recordings are restricted to good
weather conditions, which already pose a significant challenge for
computer vision. We believe that more challenging and diverse
weather conditions should be addressed in specialized datasets

Table 1. Overview of annotated classes

Group Class Description

ground (2) road where cars drive or stand
sidewalk where people go or rest

human (2) person1 walking or sitting
rider1 people on means of transport

vehicle (7)

car1

truck1

bus1

on rails1 trams, trains
motorcycle1 also scooters etc.
bicycle1

license plate2 on vehicles

infra-
structure
(8)

building houses, skyscrapers
wall not part of a building
fence
traffic sign
traffic light
pole
bridge2

tunnel2

nature (2) tree any vertical vegetation
terrain grass, soil, sand

sky (1) sky

void (3)
ground any other horizontal surface
dynamic e.g. baby strollers, animals
static other/unrecognizable objects

1 Single instance annotation available.
2 Not included in fine label set challenges, see Sec. 3.

such as used in [17]. To achieve a high diversity, each anno-
tated frame is manually selected, in order to focus on “non-empty”
scenes, i.e. with a large number of dynamic objects on the street,
and simultaneously achieving a high variety in scene layout and
background.

Metadata. In addition to the annotated frame, our dataset will
contain preceding and trailing video frames. Approximately half
of the annotated images are extracted from long video sequences,
while the remaining are the 20th images from 30 frame video
snippets (1.8 s). The surrounding frames are provided as con-
text for methods exploiting optical flow, tracking, or structure-
from-motion. In addition to video, we provide corresponding right
stereo views, precomputed depth maps, GPS coordinates, and ego-
motion data from the vehicle odometry.

Volume. Deciding upon a specific volume is a difficult task. Our
general mindset is to aim for a tenfold increase over existing com-
parable datasets. We currently finished roughly 800 images with
high quality annotations and are aiming to reach about 5 000 for
the first release of the dataset. These images will be divided up
for training, validation, and testing. Further, we plan to acquire up
to 20 000 additional images with coarse annotations. We believe
this volume would serve research on exploiting large amounts of
(weakly annotated) data.

3. Benchmark Suite

We will setup a benchmark suite together with an evaluation
server, such that authors can upload their results and get a ranking



regarding the different tasks. Our evaluation concept is designed
such that a single algorithm can contribute to multiple challenges.

For each challenge, we aim for scalar scores to allow for an
intuitive ranking of the approaches compared. We use different
metrics to assess various aspects of these challenges, but for each
such aspect, we restrict ourselves to a single score to avoid redun-
dancy in the evaluation. Further, we evaluate all measures on a
coarse label set, i.e. label groups such as vehicle or infrastructure,
and on a fine label set, i.e. classes such as car, truck, bus, build-
ing, pole, or fence. For details on the label groups and classes we
defined see Table 1.

In the following, we discuss some challenges we plan to set
up and the corresponding evaluation metrics we are planning to
use. However, the exact definition of challenges and metrics is
still open for discussion.

Scene labeling task. The task is to assign a single label to each
pixel in the image, i.e. the required output of an algorithm are im-
ages where a pixel value represents its class. To analyze the perfor-
mance on the pixel level we utilize the PASCAL VOC intersection-
over-union metric (IU) [4], which is also known as Jaccard Index
(JI). This score is one of the standard measures for scene label-
ing. For each label, the number of true positive (TP), false positive
(FP), and false negative (FN) pixels are determined over the whole
test set. Then, the IU metric is defined as

IU =
TP

TP + FP + FN
. (1)

The final score on the coarse label set is denoted by mIUcoarse

and computed as the mean of the individual group scores. Analo-
gously, we compute the score on the fine label set mIUfine. In both
cases, pixels with void label do not contribute to the score.

One shortcoming of the global IU measure is the strong focus
on object instances that cover many pixels in the image. In the con-
text of street scenes with their large variation in object scale, this
problem is particularly pronounced. Thus, a normalization regard-
ing this issue in terms of a metric that assesses the performance of
a method also on an instance level is needed. To account for this
fact, we propose an additional score for the scene labeling task
that aims to answer the question of how well a certain approach
represents the individual traffic participants in the scene.

The proposed measure aims to assess both detection and seg-
mentation capabilities of a method at the same time. To this end,
we compute a curve where the x-axis is the minimum pixel-level
overlap between a predicted and a ground truth region for a true
positive and the y-axis is the resulting F-score

F = 2
precision · recall

precision + recall
. (2)

While a higher F-score stands for a better detection performance,
reaching a certain F-score with a larger pixel overlap means better
segmentation accuracy.

We define the area under the curve as the average F-score (AF)
per label. The mean over all classes is then used for the final
scores, mAFcoarse and mAFfine, respectively. Note that the aver-
age could also be computed in a smaller range of the overlap, e.g.
25% to 50% for a focus on the detection part, or 50% to 100%
to focus on the segmentation aspect.

(a) Label annotation Al (b) Object instance ann. Ao

(c) Label prediction Pl (d) Object instance pred. Po

Figure 2. Overview of different annotation and prediction formats. The
object instance prediction (d) is generated using Alg. 1. Note the false
positive vehicle prediction to the right of the pedestrians.

Algorithm 1 Generate object instance from label prediction
Input: Label prediction P l, Object instance annotation Ao

Allocate searched object instance prediction Po

Rp ← connectedRegions(P l)
for all regions R ∈ Rp do

l← label(R)
// Find all candidate object instances for the region:
Co ← {o | o ∈ R(Ao) ∧ label(o) = l}
if Co = ∅ then

Po(R)← new object instance (false positive)
else

for all pixels p ∈ R do
// Find closest candidate object instance for p:
Po(p)← argmin

o∈Co

min
pixel q∈Ao , with

label(q)=label(o)

dist(p, q)

end for
end if

end for
Output: Po

Since we want to evaluate standard scene labeling methods
within this challenge, we do not require the method to provide
instance-level predictions. However, to still allow for this type
of evaluation, we artificially generate instance predictions from
the regular label predictions using ground truth annotations. See
Fig. 2 for an example and Algorithm 1 for details on the generation
of these predictions.

Instance-level scene labeling task. This challenge assesses algo-
rithms that aim at predicting the individual instances in the scene.
Such an algorithm is expected to provide instance predictions as-
sociated with a class, a segmentation, and a confidence score. As
evaluation metric, we compute the average precision on the region
level (APR) for each label, which corresponds to the APr

vol value
from [10]. This metric is the volume under a graph with the three
axes recall, precision, and overlap. The latter is computed on the
region level and equals the IU of a single instance. For each such
overlap value, precision-recall curves are computed in a standard
fashion, where multiple predictions of the same ground truth in-
stance count as false positives. To obtain a single scalar score,
we average all APR volumes over the coarse label set, yielding
mAPRcoarse, and over the fine label set, giving mAPRfine.



Object detection task. Algorithms are expected to deliver bound-
ing box predictions of the object instances in the scene, associated
with a confidence score. This task is evaluated as in the PAS-
CAL VOC challenge [4] via the average precision score APB. This
metric equals the APR metric, except for an overlap computed on
the box level and a fixed threshold of 50%. We denote the aver-
age result over coarse labels as mAPBcoarse and over fine labels as
mAPBfine.

Meta information. In addition to the previously introduced mea-
sures, we plan to report timings for each method and a video of
the inferred labeling result on a designated sequence of the dataset
to allow for a qualitative assessment of the approach. Further, we
list the kind of information each algorithm is using, e.g. stereo or
video.

4. Conclusion and Outlook

In this work, we presented our current plans for a novel,
densely annotated large-scale dataset for semantic understanding
of urban street scenes. We discussed the scale of the dataset, the
kind of data recorded, the annotations we plan to provide, as well
as a preliminary list of evaluation metrics we are considering for
the tasks of image- and instance-level semantic labeling, as well
as object detection.

Several aspects are still up for discussion, and timely feedback
from the community would be greatly appreciated. Some currently
open questions are: (1) Are there other sensible evaluation metrics
for the tasks of scene labeling and object detection that should
be considered? (2) Which other problems related to street scene
understanding would benefit from such a dataset, and what exten-
sions to the dataset, e.g. in terms of annotations, would be neces-
sary to support these additional challenges? (3) Are changes to the
labeling protocol required?

Concurrently with this workshop, we have published a web-
site (www.cityscapes-dataset.net) that provides a de-
tailed list of the annotated classes, describes the data formats, and
presents annotation examples. Further, we aim to use the website
to collect remarks and suggestions.

Due to the rapid progress in our field, we intend for our efforts
not to merely culminate in a static one-off release. Instead, we
view this dataset as a dynamic entity, which we plan to be grow-
ing over time. Thus, subsequent releases will be such that they
expand the initial version and not render it obsolete. We plan to
release an initial version of the dataset and the benchmark in au-
tumn 2015, and to organize a challenge based on the benchmark at
CVPR 2016.
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